SimplnxReview Filter API
This is the documentation for all filters included in the SimplnxReview module. These filters can be used by importing the appropriate module. Each filter is contained in the module:
import simplnxreview
# Instantiate and execute a filter from the module
result = simplnxreview.SomeFilterName.execute(...)
Compute Grouping Densities
- class SimplnxReview.ComputeGroupingDensityFilter
This Filter calculates the grouping densities for specific Parent Features. This filter is intended to be used for hierarchical reconstructions (i.e., reconstructions involving more than one segmentation; thus, the Feature-Parent Feature relationship). The Filter iterates through all Features that belong to each Parent Feature, querying each of the Feature Neighbors to determine if it was checked during grouping. A list of Checked Features is kept for each Parent Feature. Then, each Parent Volume is divided by the corresponding total volume of Checked Features to give the Grouping Densities.
Link to the full online documentation for ComputeGroupingDensityFilter
Mapping of UI display to python named argument
UI Display
Python Named Argument
Checked Features Name
checked_features_name
Contiguous Neighbor List
contiguous_neighbor_list_path
Find Checked Features
find_checked_features
Grouping Densities Name
grouping_densities_name
Non-Contiguous Neighbor List
non_contiguous_neighbor_list_path
Parent Ids
parent_ids_path
Parent Volumes
parent_volumes_path
Use Non-Contiguous Neighbors
use_non_contiguous_neighbors
Volumes
volumes_path
- Execute(data_structure, checked_features_name, contiguous_neighbor_list_path, find_checked_features, grouping_densities_name, non_contiguous_neighbor_list_path, parent_ids_path, parent_volumes_path, use_non_contiguous_neighbors, volumes_path)
- Parameters:
data_structure (DataStructure) – The DataStructure object that holds the data to be processed.
checked_features_name (nx.DataObjectNameParameter)
contiguous_neighbor_list_path (nx.NeighborListSelectionParameter)
find_checked_features (nx.BoolParameter)
grouping_densities_name (nx.DataObjectNameParameter)
non_contiguous_neighbor_list_path (nx.NeighborListSelectionParameter)
parent_ids_path (nx.ArraySelectionParameter)
parent_volumes_path (nx.ArraySelectionParameter)
use_non_contiguous_neighbors (nx.BoolParameter)
volumes_path (nx.ArraySelectionParameter)
- Returns:
Returns a nx.IFilter.ExecuteResult object that holds any warnings and/or errors that were encountered during execution.
- Return type:
Compute Local Average C-Axis Misalignments
- class SimplnxReview.ComputeLocalAverageCAxisMisalignmentsFilter
This filter finds parent average feature kernel average c-axis misalignment. Alternatively, if the “Calculate Unbiased Local Average C-Axis Misalignment” parameter is TRUE, the parent average sub-boundary misalignment is calculated.
Link to the full online documentation for ComputeLocalAverageCAxisMisalignmentsFilter
Mapping of UI display to python named argument
UI Display
Python Named Argument
Average C-Axis Misalignments
avg_c_axis_misalignments_path
C-Axis Misalignment List
c_axis_misalignment_list_path
Calculate Local C-Axis Misalignments
calc_biased_avg
Calculate Unbiased Local C-Axis Misalignments
calc_unbiased_avg
Feature Parent Ids
feature_parent_ids_path
Local C-Axis Misalignments Array Name
local_c_axis_misalignments_name
Neighbor List
neighbor_list_path
New Cell Feature Attribute Matrix Name
new_cell_feature_attribute_matrix_path
Number of Features Per Parent Array Name
num_features_per_parent_name
Unbiased Local CAxis Misalignments Array Name
unbiased_local_c_axis_misalignments_name
- Execute(data_structure, avg_c_axis_misalignments_path, c_axis_misalignment_list_path, calc_biased_avg, calc_unbiased_avg, feature_parent_ids_path, local_c_axis_misalignments_name, neighbor_list_path, new_cell_feature_attribute_matrix_path, num_features_per_parent_name, unbiased_local_c_axis_misalignments_name)
- Parameters:
data_structure (DataStructure) – The DataStructure object that holds the data to be processed.
avg_c_axis_misalignments_path (nx.ArraySelectionParameter)
c_axis_misalignment_list_path (nx.NeighborListSelectionParameter)
calc_biased_avg (nx.BoolParameter)
calc_unbiased_avg (nx.BoolParameter)
feature_parent_ids_path (nx.ArraySelectionParameter)
local_c_axis_misalignments_name (nx.DataObjectNameParameter)
neighbor_list_path (nx.NeighborListSelectionParameter)
new_cell_feature_attribute_matrix_path (nx.DataGroupSelectionParameter)
num_features_per_parent_name (nx.DataObjectNameParameter)
unbiased_local_c_axis_misalignments_name (nx.DataObjectNameParameter)
- Returns:
Returns a nx.IFilter.ExecuteResult object that holds any warnings and/or errors that were encountered during execution.
- Return type:
Compute MicroTexture Regions
- class SimplnxReview.ComputeMicroTextureRegionsFilter
This filter does the following…
Link to the full online documentation for ComputeMicroTextureRegionsFilter
Mapping of UI display to python named argument
UI Display
Python Named Argument
Parent Cell Feature Attribute Matrix
cell_feature_attribute_matrix_path
Cell Feature Ids
feature_ids_array_path
Selected Image Geometry
image_geom_path
Micro Texture Region Fraction Occupied Array Name
micro_texture_region_fraction_occupied_array_name
Micro Texture Region Number of Cells Array Name
micro_texture_region_num_cells_array_name
- Execute(data_structure, cell_feature_attribute_matrix_path, feature_ids_array_path, image_geom_path, micro_texture_region_fraction_occupied_array_name, micro_texture_region_num_cells_array_name)
- Parameters:
data_structure (DataStructure) – The DataStructure object that holds the data to be processed.
cell_feature_attribute_matrix_path (nx.DataGroupSelectionParameter)
feature_ids_array_path (nx.ArraySelectionParameter)
image_geom_path (nx.GeometrySelectionParameter)
micro_texture_region_fraction_occupied_array_name (nx.DataObjectNameParameter)
micro_texture_region_num_cells_array_name (nx.DataObjectNameParameter)
- Returns:
Returns a nx.IFilter.ExecuteResult object that holds any warnings and/or errors that were encountered during execution.
- Return type:
Compute Feature Saltykov Sizes
- class SimplnxReview.ComputeSaltykovSizesFilter
This filter calculates the Saltykov sizes of all Features. The filter takes the EquavalentDiameters, of assumed 2D data, and estimates the 3D equivalent diameters.The filter will continue iteratively performing the Saltykov Method of spheres, starting with an initial guess of 10 size bins, until the number of features equals the number of Saltykov equivalent diameters to be sampled. If the number of Features to be sampled from the Saltykov bins is not equal to the number of Features then the difference between the two is calculated. Then, the number of attempts is incremented and the number of bins is increased/decreased based on the “difference” and the bin arrays are resized accordingly. This approach allows for the correct number of Features to result because increasing the number of bins increases the number of SaltykovEquavalentDiameters to be sampled and decreasing the number of bins does the opposite. However, if the number of maximum attempts, hardcoded at 10, is reached, random Saltykov bins are selected to add samples to until the the number of SaltykovEquavalentDiameters to be sampled equals the number of Features. This is done because it is assumed that after 10 attempts the solution is ocsillating between the minima.The filter is applied in such a way so that SaltykovEquivalentDiameters has the correct feature-level data length. This way, a direct one-to-one comparies between EquivalentDiameters and SaltykovEquivalentDiameters is possible. However, it is important to note that the SaltykovEquivalentDiameters are not a direct transformation of EquivalentDiameters that they are matched up with.For more information, see: Joseph C. Tucker, Lisa H. Chan, Gregory S. Rohrer, Michael A. Groeber, and Anthony D. Rollett. Comparison of grain size distributions in a ni-based superalloy in three and two dimensions using the saltykov method. Scripta Materialia, 66(8):554 - 557, 2012.
Link to the full online documentation for ComputeSaltykovSizesFilter
Mapping of UI display to python named argument
UI Display
Python Named Argument
Equivalent Diameters
equivalent_diameters_array_path
Saltykov Equivalent Diameters Name
saltykov_equivalent_diameters_name
Seed
seed_value
Use Seed for Random Generation
use_seed
- Execute(data_structure, equivalent_diameters_array_path, saltykov_equivalent_diameters_name, seed_value, use_seed)
- Parameters:
data_structure (DataStructure) – The DataStructure object that holds the data to be processed.
equivalent_diameters_array_path (nx.ArraySelectionParameter)
saltykov_equivalent_diameters_name (nx.DataObjectNameParameter)
seed_value (nx.UInt64Parameter) – The seed fed into the random generator
use_seed (nx.BoolParameter) – When true the user will be able to put in a seed for random generation
- Returns:
Returns a nx.IFilter.ExecuteResult object that holds any warnings and/or errors that were encountered during execution.
- Return type:
Group MicroTexture Regions
- class SimplnxReview.GroupMicroTextureRegionsFilter
This Filter groups neighboring Features that have c-axes aligned within a user defined tolerance. The algorithm for grouping the Features is analogous to the algorithm for segmenting the Features - only the average orientation of the Features are used instead of the orientations of the individual Cells and the criterion for grouping only considers the alignment of the c-axes. The user can specify a tolerance for how closely aligned the c-axes must be for neighbor Features to be grouped.
Link to the full online documentation for GroupMicroTextureRegionsFilter
Mapping of UI display to python named argument
UI Display
Python Named Argument
Active Array Name
active_array_name
Average Quaternions
avg_quats_array_path
C-Axis Alignment Tolerance (Degrees)
c_axis_tolerance
Cell Parent Ids Array name
cell_parent_ids_array_name
Contiguous Neighbor List
contiguous_neighbor_list_array_path
Crystal Structures
crystal_structures_array_path
Cell Feature Ids
feature_ids_array_path
Feature Parent Ids Array Name
feature_parent_ids_array_name
Feature Phases
feature_phases_array_path
New Cell Feature Attribute Matrix
new_cell_feature_attribute_matrix_path
Non-Contiguous Neighbor List
non_contiguous_neighbor_list_array_path
Stored Seed Value Array Name
seed_array_name
Seed
seed_value
Use Non-Contiguous Neighbors
use_non_contiguous_neighbors
Group C-Axes With Running Average
use_running_average
Use Seed for Random Generation
use_seed
Volumes
volumes_array_path
- Execute(data_structure, active_array_name, avg_quats_array_path, c_axis_tolerance, cell_parent_ids_array_name, contiguous_neighbor_list_array_path, crystal_structures_array_path, feature_ids_array_path, feature_parent_ids_array_name, feature_phases_array_path, new_cell_feature_attribute_matrix_path, non_contiguous_neighbor_list_array_path, seed_array_name, seed_value, use_non_contiguous_neighbors, use_running_average, use_seed, volumes_array_path)
- Parameters:
data_structure (DataStructure) – The DataStructure object that holds the data to be processed.
active_array_name (nx.DataObjectNameParameter)
avg_quats_array_path (nx.ArraySelectionParameter) – Specifies the average orientation of each Feature in quaternion representation
c_axis_tolerance (nx.Float32Parameter)
cell_parent_ids_array_name (nx.DataObjectNameParameter)
contiguous_neighbor_list_array_path (nx.NeighborListSelectionParameter) – List of contiguous neighbors for each Feature.
crystal_structures_array_path (nx.ArraySelectionParameter) – Enumeration representing the crystal structure for each Ensemble
feature_ids_array_path (nx.ArraySelectionParameter) – Data Array that specifies to which Feature each Element belongs
feature_parent_ids_array_name (nx.DataObjectNameParameter)
feature_phases_array_path (nx.ArraySelectionParameter) – Specifies to which Ensemble each Feature belongs
new_cell_feature_attribute_matrix_path (nx.DataGroupCreationParameter)
non_contiguous_neighbor_list_array_path (nx.NeighborListSelectionParameter) – List of non-contiguous neighbors for each Feature.
seed_array_name (nx.DataObjectNameParameter)
seed_value (nx.UInt64Parameter) – The seed fed into the random generator
use_non_contiguous_neighbors (nx.BoolParameter)
use_running_average (nx.BoolParameter)
use_seed (nx.BoolParameter) – When true the user will be able to put in a seed for random generation
volumes_array_path (nx.ArraySelectionParameter)
- Returns:
Returns a nx.IFilter.ExecuteResult object that holds any warnings and/or errors that were encountered during execution.
- Return type:
Interpolate Values To Unstructured Grid
- class SimplnxReview.InterpolateValuesToUnstructuredGridFilter
This filter will sample a point cloud’s data onto a target unstructured grid (Vertex, Edge, Triangle, Quad, Hex, Tet Geometry) via a nearest neighbor algorithm.
Link to the full online documentation for InterpolateValuesToUnstructuredGridFilter
Mapping of UI display to python named argument
UI Display
Python Named Argument
Created Vertex Attribute Matrix
created_attr_matrix_name
Interpolated Node-Based Geometry
destination_geometry_path
Vertex Attribute Matrix
existing_attr_matrix_path
Attribute Arrays to Interpolate
interpolated_array_paths
Node-Based Geometry To Interpolate
source_geometry_path
Use Existing Attribute Matrix
use_existing_attr_matrix
- Execute(data_structure, created_attr_matrix_name, destination_geometry_path, existing_attr_matrix_path, interpolated_array_paths, source_geometry_path, use_existing_attr_matrix)
- Parameters:
data_structure (DataStructure) – The DataStructure object that holds the data to be processed.
created_attr_matrix_name (nx.DataObjectNameParameter) – DataPath to created AttributeMatrix for interpolated data
destination_geometry_path (nx.GeometrySelectionParameter) – DataPath to node-based interpolated geometry
existing_attr_matrix_path (nx.AttributeMatrixSelectionParameter) – Vertex attribute matrix to store the interpolated data
interpolated_array_paths (nx.MultiArraySelectionParameter) – DataPaths to interpolate
source_geometry_path (nx.GeometrySelectionParameter) – DataPath to node-based geometry to interpolate
use_existing_attr_matrix (nx.BoolParameter) – Use an existing attribute matrix to store the interpolated arrays.
- Returns:
Returns a nx.IFilter.ExecuteResult object that holds any warnings and/or errors that were encountered during execution.
- Return type:
Merge Colonies
- class SimplnxReview.MergeColoniesFilter
This Filter groups neighboring Features that have a special misorientation that is associated with alpha variants that transformed from the same beta grain in titanium. The algorithm for grouping the Features is analogous to the algorithm for segmenting the Features, except the average orientation of the Features are used instead of the orientations of the individual Elements and the criterion for grouping is specific to the alpha-beta transformation. The user can specify a tolerance on both the axis and the angle that defines the misorientation relationship (i.e., a tolerance of 1 degree for both tolerances would allow the neighboring Features to be grouped if their misorientation was between 59-61 degrees about an axis within 1 degree of a2, as given by the 3rd special misorientation below).
Link to the full online documentation for MergeColoniesFilter
Mapping of UI display to python named argument
UI Display
Python Named Argument
Active
active_array_name
Angle Tolerance (Degrees)
angle_tolerance
Average Quaternions
avg_quats_array_path
Axis Tolerance (Degrees)
axis_tolerance
Cell Parent Ids
cell_parent_ids_array_name
Cell Phases
cell_phases_array_path
Contiguous Neighbor List
contiguous_neighbor_list_array_path
Crystal Structures
crystal_structures_array_path
Cell Feature Ids
feature_ids_array_path
Feature Parent Ids
feature_parent_ids_array_name
Feature Phases
feature_phases_array_path
Feature Attribute Matrix
new_cell_feature_attribute_matrix_path
Non-Contiguous Neighbor List
non_contiguous_neighbor_list_array_path
Seed
seed_value
Use Non-Contiguous Neighbors
use_non_contiguous_neighbors
Use Seed for Random Generation
use_seed
- Execute(data_structure, active_array_name, angle_tolerance, avg_quats_array_path, axis_tolerance, cell_parent_ids_array_name, cell_phases_array_path, contiguous_neighbor_list_array_path, crystal_structures_array_path, feature_ids_array_path, feature_parent_ids_array_name, feature_phases_array_path, new_cell_feature_attribute_matrix_path, non_contiguous_neighbor_list_array_path, seed_value, use_non_contiguous_neighbors, use_seed)
- Parameters:
data_structure (DataStructure) – The DataStructure object that holds the data to be processed.
active_array_name (nx.DataObjectNameParameter)
angle_tolerance (nx.Float32Parameter)
avg_quats_array_path (nx.ArraySelectionParameter)
axis_tolerance (nx.Float32Parameter)
cell_parent_ids_array_name (nx.DataObjectNameParameter)
cell_phases_array_path (nx.ArraySelectionParameter)
contiguous_neighbor_list_array_path (nx.NeighborListSelectionParameter)
crystal_structures_array_path (nx.ArraySelectionParameter)
feature_ids_array_path (nx.ArraySelectionParameter)
feature_parent_ids_array_name (nx.DataObjectNameParameter)
feature_phases_array_path (nx.ArraySelectionParameter)
new_cell_feature_attribute_matrix_path (nx.DataGroupCreationParameter)
non_contiguous_neighbor_list_array_path (nx.NeighborListSelectionParameter)
seed_value (nx.UInt64Parameter) – The seed fed into the random generator
use_non_contiguous_neighbors (nx.BoolParameter)
use_seed (nx.BoolParameter) – When true the user will be able to put in a seed for random generation
- Returns:
Returns a nx.IFilter.ExecuteResult object that holds any warnings and/or errors that were encountered during execution.
- Return type:
Read Zeiss TXM/TXRM Files
- class SimplnxReview.ReadZeissTxmFileFilter
This filter will read the entire volume or optionally a subvolume from a .txm or .txrm file. These filesare Zeiss xCT reconstrucion files.
Link to the full online documentation for ReadZeissTxmFileFilter
Mapping of UI display to python named argument
UI Display
Python Named Argument
Cell Attribute Matrix
cell_attribute_matrix_name
CT Data
ct_data_array_name
Zeiss TXM/TXRM File
input_file_path
Image Geometry
output_image_geometry_path
Slice End (inclusive)
sub_volume_end_slice
Slice Start
sub_volume_start_slice
Use Z Sub-volume
use_sub_volume
- Execute(data_structure, cell_attribute_matrix_name, ct_data_array_name, input_file_path, output_image_geometry_path, sub_volume_end_slice, sub_volume_start_slice, use_sub_volume)
- Parameters:
data_structure (DataStructure) – The DataStructure object that holds the data to be processed.
cell_attribute_matrix_name (nx.DataObjectNameParameter) – The attribute matrix created as a child of the image geometry
ct_data_array_name (nx.DataObjectNameParameter) – The data array created as a child of the attribute matrix
input_file_path (nx.FileSystemPathParameter) – The input Zeiss TXM/TXRM file
output_image_geometry_path (nx.DataGroupCreationParameter) – Path to create the Image Geometry
sub_volume_end_slice (nx.UInt32Parameter) – The ending slice to import (inclusive)
sub_volume_start_slice (nx.UInt32Parameter) – The starting slice to import
use_sub_volume (nx.BoolParameter) – Only import a sub-set of the slices
- Returns:
Returns a nx.IFilter.ExecuteResult object that holds any warnings and/or errors that were encountered during execution.
- Return type: